Newton Interpolation with Extremely High Degrees by Leja Ordering and Fast Leja Points

نویسندگان

  • Michael Breuß
  • Oliver Vogel
  • Kai Uwe Hagenburg
چکیده

In this paper we perform a numerical study of Newton polynomial interpolation. We explore the Leja ordering of Chebyshev knots and the Fast Leja knots introduced by Reichel. In all previous publications we are aware of, the degree of interpolation polynomials in use is in the order of a few hundreds. We show that it is possible to employ degrees of up to one million or higher without a numerical stability problem or excessive computation times. We also show experimentally that Leja ordering and Fast Leja points enable stable and meaningful interpolation of functions that are just continuous or even discontinuous.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of modified Leja sequences to polynomial interpolation

We discuss several applications of the Leja point method for univariate polynomial interpolation. First we show how more or less arbitrary interpolation points sets can be stabilized by adding some points from the Leja sequence generated beginning with the given set. We then show how the Leja point idea can be used to generate good point sets for Hermite–Lagrange polynomial interpolation. Then ...

متن کامل

New bounds on the Lebesgue constants of Leja sequences on the unit disc and their projections R-Leja sequences

Motivated by the development of non-intrusive interpolation methods for parametric PDE’s in high dimension, we have introduced in [8] a sparse multi-variate polynomial interpolation procedure based on the Smolyak formula. The evaluation points lie in an infinite grid ⊗j=0Z where Z = (zj)j≥0 is any infinite sequence of mutually distinct points in some compact X in R or C. A key aspect of the int...

متن کامل

Adaptive Leja Sparse Grid Constructions for Stochastic Collocation and High-Dimensional Approximation

We propose an adaptive sparse grid stochastic collocation approach based upon Leja interpolation sequences for approximation of parameterized functions with high-dimensional parameters. Leja sequences are arbitrarily granular (any number of nodes may be added to a current sequence, producing a new sequence) and thus are a good choice for the univariate composite rule used to construct adaptive ...

متن کامل

The Leja Method Revisited: Backward Error Analysis for the Matrix Exponential

The Leja method is a polynomial interpolation procedure that can be used to compute matrix functions. In particular, computing the action of the matrix exponential on a given vector is a typical application. This quantity is required, e.g., in exponential integrators. The Leja method essentially depends on three parameters: the scaling parameter, the location of the interpolation points, and th...

متن کامل

Comparing Leja and Krylov Approximations of Large Scale Matrix Exponentials

We have implemented a numerical code (ReLPM, Real Leja Points Method) for polynomial interpolation of the matrix exponential propagators exp (∆tA)v and φ(∆tA)v, φ(z) = (exp (z) − 1)/z. The ReLPM code is tested and compared with Krylov-based routines, on large scale sparse matrices arising from the spatial discretization of 2D and 3D advection-diffusion equations.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010